ORGANOMETALLIC COMPOUNDS IN ORGANIC SYNTHESIS : ELECTROPHILIC REACTIONS OF SOME TRICARBONYLCYCLOHEXADIENYLIUM-IRON COMPLEXES WITH ALLYLTRIMETHYL SILANES.

Lawrence F. Kelly, Acharan S. Narula and Arthur J. Birch*

Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia.

Summary: Allyltrimethylsilanes react with a range of tricarbonylcyclohexadienyl-iron complexes under mild conditions to form new carbon-carbon bonds in excellent yields.

Salts of tricarbonylcyclohexadienyl-iron cations have considerable potentialities in organic synthesis¹. They react with a wide range of nucleophiles² to form new C-X bonds (X = 0, S, N, P, C). New C-C bonds are formed using enols (from ketones³, dicarbonyl derivatives³), trimethysilylenol-ethers⁴, alkyls derived from boron⁵, zinc⁶, cadmium⁶ and copper⁷. Attack of such reagents is completely stereospecific from the α -side [rear to Fe(CO)₃], but regiospecificity is more limited, one useful exception being 2-OMe which directs into an unsubstituted 5-position³. Some synthetic uses of the latter have been reported⁸, including reactions at a substituted 5-position. Regiospecificity varies with the nucleophile³ and is probably related partly to kinetic or thermodynamic control of products, partly to steric effects, and partly to charge-distribution in the cation which is assessed using ¹³C NMR⁹.

For 2-substituted salts the reactions are:

Nu = Nucleophile

We now describe a new reaction of considerable synthetic potential, offering advantages over previous processes involving organometallic allyl donors, employing allyltrimethylsilanes as shown below. The advantages of the reagents are: (1) they are stable to air and water; (2) they do not undergo allylic isomerization¹⁰; (3) they contain an excellent electrofugal group ${}^{+}SiMe_{3}{}^{11}$; (4) the double bond is highly nucleophilic¹² but is also capable of reacting with a range of electrophiles¹³. The result of the process shown is transfer of an allyl group to the terminus of a tricarbonylcyclohexadienyliron cation to give a dienyl complex in good yields (52-98%) under very simple experimental conditions.

SALTS	YIELDS(%)		COMPLEX
$R_1 = R_2 = R_3 = R_4 = H$	(52) ^a	(6)	$R_1 = R_2 = R_3 = R_4 = H$
$R_1 = R_3 = R_4 = H; R_2 = Me$	(64) ^b	(7)	$R_1 = R_3 = R_4 = H; R_2 = Me$
$R_1 = R_2 = R_4 = H; R_3 = OMe$	(77) ^C	(8)	$R_1 = R_2 = R_4 = H; R_3 = OMe$
$R_1 = COOMe; R_2 = Me; R_3 = R_4 = H$	(80) ^d	(9)	$R_1 = COOMe; R_2 = Me; R_3 = R_4 = H$
$R_1 = R_4 = H; R_2 R_3 = (CH_2)_4$	(98) ^e	(10)	$R_1 = R_4 = H; R_2 R_3 = \{CH_2\}_4$
	$\begin{array}{rcl} \underline{SALTS} \\ R_1 &= R_2 &= R_3 &= R_{4_1} &= H \\ R_1 &= R_3 &= R_{4_1} &= H; \ R_2 &= Me \\ R_1 &= R_2 &= R_{4_1} &= H; \ R_3 &= OMe \\ R_1 &= COOMe; \ R_2 &= Me; \ R_3 &= R_{4_1} &= H \\ R_1 &= R_{4_1} &= H; \ R_2 &= R_3 &= (CH_2)_{4_1} \end{array}$	SALTS YIELDS(%) $R_1 = R_2 = R_3 = R_4 = H$ (52) ^a $R_1 = R_3 = R_4 = H$; $R_2 = Me$ (64) ^b $R_1 = R_2 = R_4 = H$; $R_3 = OMe$ (77) ^c $R_1 = COOMe$; $R_2 = Me$; $R_3 = R_4 = H$ (80) ^d $R_1 = R_4 = H$; $R_2 \cap R_3 = (CH_2)^{-4}$ (98) ^e	SALTS YTELDS(%) $R_1 = R_2 = R_3 = R_4 = H$ (52) ^a (6) $R_1 = R_3 = R_4 = H$; $R_2 = Me$ (64) ^b (7) $R_1 = R_2 = R_4 = H$; $R_3 = OMe$ (77) ^c (8) $R_1 = COOMe$; $R_2 = Me$; $R_3 = R_4 = H$ (80) ^d (9) $R_1 = R_4 = H$; $R_2 \cap R_3 = (CH_2)_4$ (98) ^e (10)

The regiospecificity is high, reaction occurring at the less hindered position. The presence of a substituent such as COOMe is compatible with the process.

A typical experiment simply involves refluxing an excess of allyltrimethylsilane with the salt in dry CH_2Cl_2 . As the reaction proceeds the insoluble salt goes into solution and completion of the reaction is monitored by the disappearance of $[Fe(CO)_3]^+$ bands at 2105, 2050 cm⁻¹ and appearance of $[Fe(CO)_3]$ bands at 2040, 1980 cm⁻¹ in the IR spectrum. After an appropriate reaction time, the excess silane and solvent are removed under vacuo and the neutral complex is obtained as a yellow liquid by a short chromatography over silica gel in hexane.

The structures of the products (6 \rightarrow 10) are fully supported by their ¹H-NMR data (see Table) and other spectral characteristics (IR and Mass), including combustion values.

Complex	b CH ₂ =CH	H-1	H-2	H-3	H-4	H-5 endo	H-6 exo	(2H) endo	Allyl CH2	Others
6	4.78-5.84	3.04	5.3	5.3	3.04	1.6-2.1	1.26	1.8	1.95	-
7	4.76-5.82	2.95	-	5.16 ^C	2,96 ^C	2.04	1.24	1.9	1.9	C-2,Me 1.08(s)
8	4.78-5.86	2.56	5.08 ^C	-	3.34	2.00	1.15	1.8	2.0	C-3,OMe 3.60(s)
9	4.78-5.86	-	-	5.12 ^d	3.04 [°]	2.2	1.04	2.2	1.96	C-1,COOMe 3.64(s); C-2,Me 2.48(s)
10	4.75-5.86	2.78	-	-	2.78	2.04	1.25	1.85	1.4-2.5	+CH₂+ ₄ 1.40-2.5

TABLE. ¹H-NMR Data ^a of Tricarbonylcyclohexadieniron-Complexes $(6 \rightarrow 10)$

^a Unless otherwise specified all signals are characteristic multiplets, which agree with accepted interpretation; Chemical shifts are in δ values.

^b Characteristic multiplet; ^c dd, J=6 and 2 Hz; ^d doublet, J = 6Hz

endo - on the same face as $[Fe(CO)_3]$; exo - on the face opposite to $[Fe(CO)_3]$.

REFERENCES AND NOTES

- 1. A.J. Birch, Ann. N.Y. Acad. Sci., 333 (1980), in press.
- A.J. Birch and I.D. Jenkins in "Transition Metal Organometallics in Organic Synthesis", Ed. H. Alper, Vol. 1, 7-48 (1976), Academic Press, New York.
- A.J. Birch, K.B. Chamberlain, M.A. Haas and D.J. Thompson, J. Chem. Soc. Perkin I, 1882 (1973); A.J. Birch, K.B. Chamberlain and D.J. Thompson, J. Chem. Soc. Perkin I, 1900 (1973).
- 4. L.F. Kelly, A.S. Narula and A.J. Birch, Tetrahedron Letters, 4107 (1979).
- 5. A. Pelter, K.J. Gould and L.A.P. Kane-Maguire, J. Chem. Soc. Chem. Commun., 1029 (1974)
- 6. A.J. Birch and A.J. Pearson, Tetrahedron Letters, 2379 (1975); J. Chem. Soc. Perkin I, 954 (1976).
- 7. A.J. Pearson, Aust. J. Chem., 30, 345 (1977).
- 8. A.J. Pearson, J. Chem. Soc. Perkin I, 1255 (1979).
- 9. A.J. Birch, P.W. Westerman and A.J. Pearson, Aust. J. Chem., 29, 1671 (1976).

- 10. J. Slutsky and H. Kwart, J. Amer. Chem. Soc., 95, 8678 (1973).
- 11. I. Fleming, Chem. & Ind. (London), 7, 449 (1975); I. Fleming in Barton and Ollis's "Comprehensive Organic Chemistry", The Synthesis and Reactions of Organic Compounds, Vol. 3, Chapter 13, Ed. D.N. Jones, Pergamon Press, Oxford (1979).
- 12. A.W.P. Jarvie, Organometallic Chem. Revs. A, 6, 153 (1970).
- 13. A. Hosomi and H. Sakurai, J. Amer. Chem. Soc., 99, 1673 (1977); R. Pardo, J.P. Zahra and M. Santelli, Tetrahedron Letters, 4557 (1979); B.M. Trost and D.M.T. Chan, J. Amer. Chem. Soc., 101, 6429 and 6431 (1979); I. Fleming and I. Peterson, Synthesis, 446 (1979); A. Hosomi, M. Saito and H. Sakurai, Tetrahedron Letters, 429 (1979); B.W. Au-Yeung and I. Fleming, J. Chem. Soc. Chem. Commun., 79 and 81 (1977); J.-P. Pillot, J. Dunognes and R. Calas, Tetrahedron Letters, 1872 (1976);

J.A. Mangravite in "Organometallic Chemistry Reviews", J. Organomet. Chem. Library, <u>7</u>. pp. 179-188, Ed. D. Seyferth *et al.* Elsevier Scientific Publication Co., Amsterdam (1979).

14. Salts 3,4 and 5 were prepared as follows:

 $Tricarbonyl-(3-methoxycyclohexadienyl) iron hexafluorophosphate (3): {}^{1}\underline{H-NMR}[\delta, (CD_3)_2CO]: 6.36(d), 4.28(s), 4.20(t), 3.02(m), 2.04(d).$

15

 $Tricarbonyl-(1-carbomethoxy-2-methylcyclohexadienyl)iron hexafluorophosphate (4): \\ {}^{1}H-NMR[\delta,CD_{3}CN]^{16}: 7.04(d), 5.80(t), 4.66(t), 3.80(s), 3.20(dd), 2.48(s), 2.02(br,d).$

ĆOOMe

 $Tricarbonyl-(1-5-n-bicyclo[4,4,0]decadienylium)iron hexafluorophosphate (5); \\ {}^{1}H-NMR[\delta,CD_{3}CN]: 5.76(d) 4.30(t), 3.76(d), 1.8-3.2(m)$

R.E. Ireland, G.G. Brown, R.H. Stanford and T.C. McKenzie, J. Org. Chem., <u>39</u>, 51 (1974).
 Unpublished results: A.J. Birch, B.M.R. Bandara and W.D. Raverty of this laboratory.

(Received in UK 3 December 1979)